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Discretization of integral equation methods for the computation of potential flows 
results in dense matrices. The partition technique of this paper is designed to remove 
this restriction on the size of problems that can be efficiently computed by integral equation 
methods. This technique consists of dividing the domain by partition curves and then 
applying a standard integral equation method to each of the subdomains. The potential 
on the partition curves as well as the absolute value of its normal derivative are considered 
to be additional unknowns. Although the number of unknowns was thus increased, the 
number of nonzero entries in the matrix of the extended system was considerably reduced. 
Using a partial elimination process in each of the subdomains, a determined system of 
equations for the unknowns on the partition curves is automatically derived. Once the 
latter is solved, the solution in each of the subdomains is obtained by back substitution. 

The partition technique extends to problems in an unbounded domain with a radiation 
condition, and can be easily implemented in existing computer programs. To describe the 
technique, we choose the particular problem of time harmonic motion of floating bodies 
in two dimensions. 

1. INTRODUCTION 

In this paper we present a partition technique to improve the performance of 
integral equation methods in the computation of potential flows. The partition 
technique is general and can be applied to many problems of computational physics. 
Without loss of generality we describe the technique through a specific application, 
namely a two dimensional calculation of a linearized time harmonic motion of 
water due to a forced harmonic excitation of floating bodies. 

The motion of the fluid is described by means of a velocity potential @(x, t), 
x = (x, z) satisfying the Laplace equation 

A@ = tDzo + CD,, = 0 (1.1) 

and the linearized free surface condition on the undisturbed water surface I’, (see 
Fig. 1) 

@tt + g@z = 0, XEFF, U-2) 
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r = r,$ + rw t rB 

FIG. 1. Definition Sketch 

where g is the gravitational acceleration. The free surface z = 7(x, t) is given by 

7(x, t> = - ; @t(X, t), XEl-p. (1.3) 

The normal derivative of the potential on a rigid boundary coincides with the normal 
velocity of the boundary. On the fixed part of the boundary r, 

cPn = 0, XET,. (1.4a) 

On the wetted part of the boundary of an oscillating floating body rB 

f -w[A”(x, z) cos wt + A’(x, z) sin it] 

= Re -LJA(x, z) e-i”Jt 

(1.4b) 

Here n = (n, , n,) is the unit normal pointing into the water domain 9; (xc, zc) 
is the center of gyration of the body and (X, Z) is its displacement from the rest 
position; A is the angle of the floating body measured from the vertical line; w is the 
frequency of the oscillation. 

The pressure P(x, t) is determined by Euler’s integral 

p + p@t - pgf = 0 (1.5) 

with the term $p 1 VQ, I2 suppressed as being of higher order; p is the density of the 
fluid; 2 is the distance of the point x from the water surface. 
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We suppose now that the body has been oscillating for such a long time that all 
transients have died out and that the velocity potential can be written as 

@(x, t) = Re -iw 4(x, z) e-iwt. (1.6) 

The function 4(x) satisfies Laplace’s equation, the free surface condition 

and also 

g(x) = 0, XErW, 

ad Y&- (4 = 46 4, XEFg. 

(1.7) 

(1.8a) 

(1.8b) 

Although the time-dependent potential @ with bounded @, Qp, and grad @ is 
uniquely determined by its initial values, an additional condition is needed for the 
uniqueness of the steady state time-harmonic solution 4 whenever the water domain 9 
is unbounded. In case the fluid is of constant depth away from the body, this so 
called radiation condition states that asymptotically the solution is an outgoing wave 
(see [7, 81) 

lim($, T ik,f$) = 0 as X+*GO (1.9) 

where the special wave number k, is the positive real root of the equation 

ktanhkH=$=X. (1.10) 

In many applications only the solution on the boundary, namely the wave height 
(1.3) as well as the pressure exerted on the floating bodies and the confining walls, 
is of interest; thus only the potential on the boundary r of the water domain 9 need 
be obtained. An integral equation method based on Green’s identity is tailored for 
this situation. This method easily handles curved boundaries as well as mixed boundary 
conditions, including the radiation condition at &co. The main computational 
effort in this method involves line integration (surface integration in 30). Therefore 
it is relatively easy to design high order accurate schemes. In Section 2 we describe 
integral equation methods based on Green’s identity. 

Seemingly, by reducing the dimensionality of the problem one gets a much smaller 
matrix approximation than that produced by finite elements methods on finite 
difference schemes. This statement is somewhat misleading: Using finite element 
methods one arrives at a matrix with a band structure. If N is the number of nodes 
along the perimeter, then the number of entries is proportional to N4, but the number 
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of nonzero elements is proportional to N2 only. On the other hand, integral equation 
methods produce a smaller matrix with const. N2 entries but typically this matrix is 
dense. In Section 3 we present an artificial partition technique for integral equation 
methods which results in breaking the original problem into several subproblems, 
in a way which resembles introducing weak block structure to the original problem. 

In Section 4 we extend the partition technique to problems in unbounded domains. 
This is done by efficiently matching a solution of an interior problem with that of an 
exterior problem. 

In Section 5 we present numerical results which verify the validity of the partition 
technique and demonstrate the extra savings offered by it. 

2. INTEGRAL EQUATION METHODS FOR POTENTIAL FLOW PROBLEMS 

In this section we describe in general terms an integral equation method based on 
Green’s identity for the solution of the potential on the boundary r of a two- 
dimensional domain 9. We refer the reader, interested in the history of applying these 
methods to water wave problems, to reviews in [8] and [lo]. To simplify the description 
we consider first the interior problem in a bounded domain 9; discussion of the 
exterior problem is deferred to Section 4. 

Let y(x, S), 5 = (5, <), be the following function. 

y(x, S> = In R + TX, 5). (2.1) 

Here R2 = (x - 0” + (z - 5)” and W(x, g) is an arbitrarily chosen function which 
is harmonic in 9. Thus y(x, EJ satisfies the Laplace equation in 9 except at the point 
x = 5 where it has a logarithmic singularity. Applying Green’s identity to the 
velocity potential C+(X) we obtain 

dx) dcx) = s, [7(X, g) g (5) - $ y(x, 5) #)] dst , 

xE23+f, gEr, (2.2a) 

where 

a(x) = -I!+? I s, $ (x, 5) 4 . 

Here S, is that part of a circle around x with an E radius which is contained in 9 
(see [I 1, pp. 252-2581). 

The relation (2.2) when applied to a point x on the boundary r constitutes an 
integral equation for the boundary potential. The normal derivative of the potential 
on the boundary is either proportional to the potential (1.7) or is a known quantity 
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(1.8). With these boundary conditions the integral equation takes the following form: 

4x)$(x> + S, [g (x, 5) + 4~) Ax, t)] 6W ds, = jrB.r(x, C) A(S) ds, , (2.3a) 

45) = 1;; 
sErF> 
otherwise. 

Equation (2.3) involves a singular kernel but its solution 4(x) is smooth except at 
corners, Therefore it seems worthwhile to use an accurate polynomial approximation 
to the potential and to integrate the resulting products of the polynomials times 
y(x, 9) analytically, at least in the neighborhood of the singularity. We chose to 
discretize (2.3) by using a cubic spline approximation to $(x). 

Let Xj , j = l,..., N be a partition of the boundary r and let & = +(XJ. The 
points xj are not uniformly distributed; dj = / xj+l - xj 1 should be smaller towards 
corners. The variation of 4 in the z-direction is typically that of cash kz, while in the 
x-direction it behaves like cos kx. Consequently one should use a partition which 
depends on the wave number k; typically one uses more partition points per unit length 
in the x-direction than in the z-direction. 

Let &(x(s)) be a one-dimensional unit cubic spline 

Sj(Xi) = Sij (the Kronecker-6). (2.4) 

In case the boundary has corners, we construct S(x) so that it will be continuous up 
to the second derivative in a smooth segment containing xj , and to be identically 
zero in all other segments. This way, the approximation 

f(x) - g1 sMf(xJ (2.5) 

is continuous up to the second derivative, except at corners where it is only continuous. 
Approximating 9(x) in the integral equation (2.3) by (2.5) results in the following 

matrix equations 

Gq5 = a (2.6a) 
where 

d = ($1 ,..., &vY, a = (a, ,..., fzN)T, (2.6b) 

a, = s Y(XZ > S> 49 dsc . (2.6d) 
rll 

Equation (2.3) holds for all y(x, 5) of the form (2.1) and we are free to choose any 
harmonic function W(x, 5). If one chooses W(x, g) so that for 5 E r,, C I’ 

for all x E F (2.7) 
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then the integral along r in the left hand side of equation (2.3) can be written as an 
integral along r - r,, only and a smaller system for the discrete values of (b along 
r - r, obtains. At first glance this approach seems to be computationally efficient, 
however numerical tests indicate otherwise [4]. The reason for that is the complexity 
of the Green function associated with (2.7) and the fact that in this particular method 
most of the computing time goes into calculating the coefficients (2.6~). Therefore 
we shall take W(x, g) = 0 (the same choice was made in [9]) except when the bottom is 
flat; then we take W(x, 5) = log 8, where fi is the distance between x and 5; 5 is the 
reflection of 5 with respect to the flat bottom. This choice of a simple y(x, S) enables 
us to compute analytically the coefficients (2.6). 

We observe that with this choice of y(x, S) the integrals 

depend only on the geometry of the problem. This fact can be used to compute several 
modes of oscillation with several frequencies simultaneously [4]. 

The same approach can be carried over to time-dependent problems [2,3]. 

3. AN ARTIFICIAL PARTITION TECHNIQUE 

Matrices obtained from a discretization of the integral equation (2.3) are dense. 
Consequently in a computation of the boundary potential due to a high frequency 
oscillation of the floating bodies, one can very easily run into problems of insufficient 
computer memory as well as of a large computing time. It is possible to overcome 
this problem by introducing a sort of block structure to the original matrix. This is 
accomplished by an artificial division of the given domain LS into several subdomains 
9 I ,..., CBK (see Fig. 2). 

FIG. 2. Partition and Matching 
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In the following we apply relation (2.2) to each subdomain Bk , where both 4 
and @/an are unknown. The solution of the original problem in 9 is obtained by 
requiring continuity of the potential and its normal derivative across the partition 
curves r, (see [6]). Since both sides of the partition curves take part in the formulation, 
one has to specify a direction of the normal on I’, ; differentiation with respect to this 
prescribed direction is denoted by a/a 1 n j. 

Let xj ,j = l,..., N, be the division points on the boundary I’ of 9, as before, and 
let xj ,j = N + l,..., N + NA be some ordering of the points on the partition curves 
I’, . We introduce a new vector 9 of N + 2N, unknowns 

1 

4(X1>? 1 -<l<N+N,, 
*z = & KL-NA)’ N+NA+l <I<N+2N*. (3.1) 

A similar ordering is used in the subdomains L9* ; in the following we shall use 
superscripts of k to indicate intersection with LBti. We denote by xjk), j = l,..., 
N(“) + Ni”, those xj which are on r tk), the boundary of gk. This sequence is ordered 
in such a way that xjk’, j = I,..., Nu+, correspond to points on r, while xjk), j = 
Ntk’ + l,..., N’“’ + N;“, correspond to points on rik’, the partition curves in the 
boundary of C& . We denote by +tk) the Ntk) + 2NJk’ vector of unknowns 

i 

Kdk3~ 1 < 1 < N(‘) + NCk) 
A, 

*i”’ = 
NC”) + NY’ + 1 < I ,< NCk) + 2Nt! (3.2) 

Now we can specify a/a 1 n 1 on rA by prescribing that the normal to rizk) = 
r, n ggk iS pointing into &k (See Fig. 2). Next we apply relation (2.2) t0 the sub- 
domain gk ; there, according to the above sign convention, 

a(X) dcx) + s,,, [g Y(x, s> + d(s) y(x, 5)] $(5) dsr 

+ C-1)” j- 
I-:“’ 

Y(X, 5) & #J dsc (3.3) 

zz 
I cd 

y(x, 9 49 ds, . 

l-B 

Writing this relation for all xjk), j = l,..., Nck) + NAI”‘, we obtain the following 
underdetermined system of N(*) + NY’ linear equations with NckJ + 2Njk’ unknowns: 

G’k’,j,,‘k’ = a(k) 

G,‘T”j’ = I 8z.j + lro, [g (XZ 3 5) + -QJ Y(XZ 7 Q] s&) h< 

for 1 < I < NCk) + NCk) L \ A, 1 <j<Nck’+Nt), 

(3.4a) 

(3.4b) 
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GtIej’ = (- 1)” Jr?) Y(XL , 5) %N~(E) ds, 

for I < I < NCk) + NF’, \ \ NCk’ + NJf’ + 1 < j < N(k) + 2N2’, (3.4c) 

a?’ z 
s yh 7 5) 4’3 dst . (3.4d) 
rB 

This is very similar to the algorithm given in Section 2 and the same computer 
program can be used. 

We proceed by eliminating #jk’, 1 < j < N CL), the discrete values of the potential 
along P) - ry) from the last 2Ny”’ equations, using a Gaussian elimination 
procedure with row pivoting. The resulting system of linear equation is of the form 

t N(k) ++ NY’ --ft Nck’ A+ 

4(k) 

_----- 
42’ _---_- 

a 4y’ .3!nl _ 

a”74 

a,) 

(3.5) 

The subscript A denotes values belonging to the artificial partition curves. The last 
2Nik’ equations involve only values on the partition curves. At this point we can 
store the first NC”) equations in an external device. The last 2Njk’ equations of each 
subdomain gk are stored internally in proper locations of a matrix G, of the dimen- 
SiOn 2hrA X 2hrA such that 

GA 
*. N+l [ 1 : = a,,. (3.6) 

# N+BNA 

Every point on the partition curves introduces two additional unknowns and contri- 
butes a single equation to (3.4) for each subdomain ~9~ to which it belongs. In the 
context of this paper we use partition points which belong exactly to two neighboring 
subdomains. Therefore the process of accumulating the last 2NJk’ equations in (3.5) 
results in the determined system (3.6). The solution of (3.16), the values of the 
potential and its normal derivative on the partition curves, is now used to solve the 
upper triangular systems 

U(k)+(k) = a(k) _ ,+k’+2) _ DC”) 
& 4P’. (3.7) 

These systems are solved by inexpensive back substitution. 
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For the particular problem discussed in this paper, it is advisable to use partition 
curves which are almost vertical since only few points are needed to describe accurately 
the variation of the potential in the z-direction. 

Although the introduction of the partition curves increased the number of unknowns 
(presumably by a small number) and consequently the size of the matrix corresponding 
to the enlarged system, it decreased considerably the number of the nonzero entries. 
The matrix of the extended system has nonzero diagonal blocks corresponding to $(k), 
the boundary potential values in C@k , which are coupled by small off diagonal blocks 
corresponding to values on the partition curves. For large frequencies the number of 
points along vertical partition lines is small compared with the total number of points 
on the boundary of the subdomains. Suppose that ZB is divided into three subdomains 
containing each N/3 points. Then the number of nonzero entries is roughly N2/3. 
The number of operations needed to compute these entries and to execute the 
elimination process is roughly l/9 as large as in the original problem. 

In Section 5 we shall demonstrate the efficiency of the partition technique by 
numerical examples. 

4. PROBLEMS IN AN UNBOUNDED DOMAIN 

In this section we shall discuss approximate solution to floating body problems in 
which the domain is unbounded in the x-direction. To obtain uniqueness in this case 
one has to impose a radiation condition of the form (1.9) which states that asympto- 
tically the solution is an outgoing wave. 

John [S] gives an explicit formula for a Green function yR(x, 5) which satisfies the 
radiation condition (1.9) as well as 

YZ R - hYR = 0 for z = H, (4. la) 

Yz R=O for z = 0. (4.lb) 

Setting R = 1 x - [ 1, this Green function is given by 

YRG z), (6, 5)) (4.2) 

= f log[R2 + (z - [)“I + ; log[R2 + (z + g2] - 2 log H 

The path of integration in the complex p-plane is shown in Fig. 3. This Green function 
(4.2) has the following series representation (see [5]) 

yR = -2~i f $$ cash k,z cash k,,,C exp(-1 km I R) 
m=O m 

(4.3a) 

58112711-6 
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- 42 - 

- 

Re W 

FIG. 3. Path of integration in (4.2). 

where k. is the positive real root and k, , m > 1 are the positive pure imaginary roots 
of the Eq. (1.10) and 

kTn2 - X2 
Km = H(km2 - AZ) + x ’ 

m 2 0. 

Using the Green function (4.2) or (4.3) in the integral equation (2.3) involves only 
the boundaries of the floating bodies and the part of the sea bottom which is different 
from the constant depth H. However, this function is rather complicated and its 
computation is time consuming. The matrix of the discrete approximation has 
complex entries, and therefore it requires a double storage and slower arithmetic 
operations. It is our opinion that this approach will be superior to other methods 
only if the geometry is relatively simple. 

The radiation condition (1.9) can be approximated by imposing 

where k, is the wave number given by (1.10) and xR is a cut off location sufficiently 
far from the floating bodies. The approximation (4.4) was tested by Bai [l] in a 
variational method; xR was taken to be so that the cut off location will be at least 5H 
away from the floating bodies. 

The same approximate boundary condition was used by Ho and Harten in [4] 
in an integral equation formulation. There, the Green’s relation (2.2) is applied 
to a domain bounded by an artificial vertical boundary rR located at x = xR on which 
condition (4.4) is imposed, and the same simple y = log R is used. This allows a fast 
computation of the matrix coefficients. On the other hand a portion of the entries is 
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complex and many unnecessary points have to be added in order to approximate 
the radiation condition. 

Large scale calculations in which there is both a complicated geometry and a 
radiation condition can be made economically possible only if one can use a simple 
and real y(x, 5) in the interior and match it efficiently with the solution of the exterior 
problem. Yeung [lo] suggests matching the solution to the integral equation of the 
interior with an eigenfunction expansion of the solution to the exterior problem. 
In the following we shall describe a straightforward extension of the partition idea of 
Section 3 to problems in unbounded domains. This technique is generalized by 
admitting a partition of the domain which contains unbounded subdomains; in the 
latter y is taken to be the Green function yR defined by the eigenfunction expansion 
(4.3). The matching procedure provided by this approach is basically the same as the 
one suggested in [IO] except that it is higher order accurate. However, the matching 
is carried out as a part of the partition technique, using the same efficient algorithm. 

The interior is separated from the exterior by vertical boundaries, pR, located 
at some convenient distance away from the floating bodies x = xR ; this distance 
need not be large. We proceed by using the technique described in Sections 2 and 3 
in the domain bounded by I’, as if I’, was a partition curve; i.e., both rj and a$/an 
on rR are considered as unknowns. The 2NR values of 4 and a$/& corresponding 
to the matching boundaries r, are ordered at the end of the vector of unknowns z,L 
(3.1). Thus we define the new vector of unknowns $ 

1 <[<IV, 
m+l <l,<m+N,, 

(4.5) 
m+NR+l <I<N++N,, 

where 

i%f= N+2NA. 

Using the algorithm (3.3), (3.4) and (3.5) we arrive at the underdetermined system of 
linear equations 

(4.6) 

where aA is of the dimension 2NA -I- NR and the matrix e, is of the dimension 
(2NA + NR) X (2NA + 2NR). We proceed by eliminating #N+l ,..., #N+2NA from the 
last NR equations using a Gaussian elimination procedure with row pivoting. As in 
(3.5), the resulting system of linear equations is of the form 
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1 
~NA 

1 

? ------- 

NR 

4 
0 

-_- 

CA / DA 

AR j BR 
-zN,-++N,-+--iv,- 

(4.7) 

where U* is an upper triangular matrix and the subscript R is used to denote values 
belonging to the matching boundaries r, . At this stage the first 2N, equations can 
be stored on an external device. Up to this point all matrices are real and y(x, 5) is a 
simple and real function. 

The next step is to supplement the last NR equations with the ZN, unknowns in (4.7) 

(4.8) 

by the additional NR equations obtained from the formulation of the exterior 
problem(s) in the strip(s) 0 < z <H,x,<x<+w(---<XX-xR). 

nd"(XR, zj> = - F HyR((XR, %), @R, 0) "' F&R, i)di (4.9) 
‘0 

where yR is the complex Green function (4.2), and the normal to rR is pointing into 
the interior domain. Observe that because rR is vertical there are no contributions 
from the term c#J~(+~/&z) other than the left-hand side of Eq. (4.9). The determined 
system of Eqs. (4.8), (4.9) of 2N, equations with 2NR unknowns is now solved for the 
complex potential +R . Next the (2N,) x (2NJ upper triangular system of Eqs. (4.7) 
is read in and solved by back substitution for #A ; from here we proceed to solve the 
systems (3.5) as described in Section 3. 

We remark that equation (4.9) is approximated by using the series representation 
(4.3) and a spline approximation for &+z. The high order of smoothness of the 
cubic splines enables us to truncate the series after few terms (usually 10 or less). 
This approximation is described in an appendix. 

5. NUMERICAL RESULTS AND CONCLUSIONS 

The partition and matching techniques presented in this paper speed up computation 
and decrease the in core memory requirements; more than that, these techniques are 
essential for solving large scale problems by integral equation methods. 

The programming logic of these techniques is rather simple and can be easily 
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incorporated in an existing computer code for the solution of the potential on the 
boundary of a single closed curve. The numerical results reported in this section were 
obtained from a modification of the computer code TWODIM described in [4]. 
TWODIM contains a subroutine which computes the coefficients of the matrix 
equation (2.6) of a given curve r. All we had to do in order to program the partition 
technique of Section 3 was to add a subroutine which defines the closed curve Pk), 
and its correspondence to the original curve r. Then the subroutines of TWODIM 
were applied to the new closed curve P) and the coefficients (3.4) were stored in the 
proper locations. 

We have compared numerical results of the partition and matching techniques 
with those obtained by TWODIM; the latter is a well verified program (see [4]). 
The test cases were those of rectangular platforms of various sizes floating in a bounded 
or semi-bounded rectangular channel or in an open sea. We have found a fairly close 
agreement in the numerical results of both programs. The results shown in Figs. 4 
and 5 are a typical sample of this agreement. In these figures we plot p and 6 

6 = -Jm s 9 Vn 4 
rP 

.2865r102 
A 

31 
75-J 

.1591x102 

2. 
x 

1. 

(5.1 a) 

(5.lb) 

0 

\ 

\ 

0 
1, 

\& 
In 
3 
wo O 
2 

TwoDIM (CONSTANT A) q 

-1 PARTITION e 

-2.5 5 10 15 20 25 30 35 40 
PERIOD T (SEC.) 

FIG. 4. Sway added mass coefficients for left F. P. with two walls. 
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FIG. 5A. Heave added mass factors for one F. P. with one wall. FIG. (B). Heave damping coefficient 
for one F. P. with one wall. 
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which are proportional to the added mass coefficient and the damping coefficient 
which determine the motion of a freely floating body (see [8]). Here r, is the wetted 
part of the floating platform and I’, is its outward unit normal. 

The cases described in Figs. 4 and 5 are those of rectangular platforms. Because of 
the 37~/2 angles at the bottom of the platforms, the first derivatives of the potential 
behave like R-Ii2 in the nieghborhood of these corners, where R is the distance from 
the corner. None of the programs described here provide any sort of a special 
expansion for the 3rr/2 corners. Figures 4 and 5 show two results of TWODIM: 
One with a uniform distribution of points and the other with a nonuniform distri- 
bution of points such that dj+,,, = 1 xj+r - xj / is relatively small near corners; 
the latter gives fairly accurate results even without a special corner treatment. 
Observe that the results of the partition technique, which was taken with a 
uniform distribution of points, are more accurate than the corresponding results 
of TWODIM. This is probably due to the particular choice of the partition 
lines shown in Fig. 4, which separate the domain into rectangular subdomains with 
rrj2 angles. 

Because of the small variation in the z-direction the number of points along any 
vertical line is taken to be 7 independent of the frequency of oscillation. The number 
of points along a horizontal boundary with a length D is taken to be max(7, 12 D/L) 
where L is the asymptotic wavelength 2n-/k, ; thus the number of points is approxi- 
mately proportional to the frequency of oscillation. The gain in using the partition 
technique versus treating the whole boundary as a single closed contour increases 
with the complexity of the problem; i.e., it increases with the frequency and a more 
detailed geometry. In the case shown in Fig. 4, the partition technique was 4-5 times 
faster than TWODIM in the range of the high frequencies, while in the low frequencies 
computing time was about the same. The gain in memory is even more significant. 
For the kind of problems discussed here the partition technique is practically 
unlimited in the size of problems it can compute in core. TWODIM, on the 
other hand, could not compute accurately higher frequencies than those shown in 
Figs. 4 and 5. 

The partition and matching techniques presented in this paper provide a very 
helpful device to tackle large scale problems via integral equation methods. The 
techniques are generalizable to three dimensional calculations and we feel that using 
them could make three dimensional problems with complex geometry economically 
feasible. 

Similar techniques can be developed for the reduced wave equation (see [6]). 

APPENDIX 

In this appendix we describe a method to compute the coefficients of the discrete 
approximation to (4.9) which is the exterior problem. We use a cubic spline approxi- 
mation for the potential and its x-derivative which in addition to the smoothness 
requirements also satisfies the boundary conditions 
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a# - = Acp a.7 for z = H, 

a+ 0 -= 
az for z = 0. 

This approximation is given by 

NR a+ 
$ tz) = zl -&- @R 7 zd &tz) 

+ X 2 (XR > H> PC4 - : P(q) s,(z)] 
j=l 

where 
P(z) = z”(z - H)/H2. 

Using the series representation (4.2) we rewrite Eq. (4.10) as 

(A.11 

64.2) 

(A.3a) 

(A.3b) 

(A-4) 

= 2rri Ii% f. J$f cash kmzj * exp(- / k, 1 6) JoH 2 (XR, 5> co& km< d<. 

We proceed by first substituting the cubic spline approximation (A.3) for &j/&r 
in the integral in (A.4) and then successively integrating by parts three times. Because 
both the Green’s function and the approximation to the normal derivative (A.3) 
satisfy the boundary conditions at z = 0 and z = H, the lower powers of km cancel 
out and we obtain a strongly convergent series in (A.4) even for E = 0. Setting E = 0 
and using relation (1.10) we can rewrite (A.4) as 

T+j = -  
g h.z ($$) 

Z 
(A.5a) 

fij,z = -2rri gl -$$ cash kmzj 

NRA 

x s;(o) - zl X’ ( ” ;“+’ ) tcosh k&+, - cash k&J]. 

1 < I < NR, (A.5b) 

x 
I 
7 $ -$ cash k,,,z,[cosh k,,,H(2 - 

m=1 
3/H) + 3/H] + c P(L) &,I, 

PH 
(A.5c) 
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and 
x1 = H, 
otherwise. 
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Since k, for m 2 1 is purely imaginary, 1 cash k,z 1 < 1 and therefore the power 
series in (A.5) are rapidly convergent (km - mn). In our computations it was sufficient 
to take 10 terms. 
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